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Abstract

Biquadratic, biquartic, bisextic, in general terms bi-order-n positive real

immittance functions can be realized as driving-point immittances of a Tee or a Pi

-section that-is terminated with a resistance, provided that the function belongs to a

certain subclass of positive real and bi-order-n functions. This general principle j
§ is discussed particularly for biquadratic and biquartic functions. It is shown that

-the Tee and-the Pi circuits implying a negative immittance of the rank 2m+l can

be-transformed into another circuit that instead of the negative immittance implies

a resistance as the only negative branch element.
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Single Too and Pi Two-Ports, Resistively Terminated

and Having a Prescribed Driving-Point Immittance

Consider the circuits shown in Figures I and 2. They are dual circuits when

U, V, W. Xo and Z i n Figure I are branch impedances an J in Figure 2, branch
admittances. They have the driving-point immittance function

U + 1
V+X V+Z

Uv + U%%W) + (U +W\.)X + (u+ V)Z+XZ(l
V+W+X+Z

Both circuitsin Figures I a 2 re resistively

terminated and owing to their duality, it will suf.-
ice to restrict our discussion to the circuit in

Figure 1. All results to be cbtained will Lold
respectively for the circuit in Figure 2. Z ( $

Let the branch impedances of the circuit X

in Figure 1 be

Figure 1. Circuit With the
!mpedance Function z(s) r(s)
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U iqp(s) ,(2.)

V- vpS) "(2b)

W=*- (s) * (2c)

X zxO(s) . (3)

Z Z . (4)

Figure 2. Circuit With Ad-
mittance Function' r(s) = (s)

In-Eqs. (2a, b, c) let u and v be positive constants and let w be such that

ilwu+:v Vw ad therefore also UV + UW + VW =0 (5)

_,Then-witI n> i and positive

u - uv -). (Ga)

=w_ - vin- W)n ( 6b)

- - Eq. (5) holds. Let x in Eq. (3) and z in Eq. (4) be also positive constants. Let

V(s) in Eqs. (2a., b, c be a normalized positive real (pr) function of the kind

sm + am_Ism-1 +"" als + a0
a(s = sl 1s 0 (7)1
b(s) m+ b.-sm-1 +" bs + bo

Let O(s) in Eq. (3) be also a normalized pr function of the kind

5 rf8La n + PM-i + ... + PIS + PO~
sa(s z + -sm-i1 '  s

-
s = " s (sz" + a _-1 S -. + a Is + a o)" s

The functions v(s) and O(s) are bi-order-m functions; m is an even or odd in-

.c-er. Substituting Eqs. (2), .... (8) in Eq. (1), we obtain

i
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s a(s.a (a) + x(n - 1) sa(s)P(s) + xb(s)p(s)/vnr(s) 2 
(9)82 a(s)a (a) + sb(s) a(s)/vn + xnb(s)p(s)/v

Evidently F is a normalized bi-order-n function; it is pr and the order n of its
numerator and denominator polynomials is

n=2m+2 
(10)

The functicn can be written in the form

MAL a n + 1r.ls'l + "f"" +q RIs+ N oD(8) n + Dnlsn- I +... + 0 + DO (11)

The bars over the capital letters in Eq. (11) indicate that p(s) is a hi-order-nfunction that can be obtained in the foregoing manner. In other words, r(s) can be
decomposed into a circuit according to Figure I when it is colisidered as an imped-
ance function, or again into a circuit according to Figure 2 when it is considered as
an admittance function. Not any pr bi-order-n function .an be decomposed in this
way, but some can be prepared at least for decomposition in this way.

Let us consider ' trivial example: Let m - 0. Then v s) - 110(s) s and
the function F(s) in this event according to Eq. (9) becomes biquadratic. Let us
denote in this particular event

F'(c) 2 
(12).ro()=a2 + PjlS +* jq 0  (12)

The coefficients in the numerator and the denominator of Pfs) are (Haase. 1966)

X(n - 1)2  
(13a)

1 l= lvn , 
(13b)

N'0 M xlvn 
(13c)

D' 0 zxnlv .
(13d)

oI
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Inversely

-. I

0= (14b)
ly I C!s0

- 0 (14c)

n- 1 1 -- (14d)

Since we assume that n_> 1 o '0> N'0 . Necessarily

It is well known that a biquadratie function

() s 2 + DS I + D o  (6

is pr if

N"ID I = (-F-O - 4 (19-

Incidentally, Eq. (15) represents the lower bound of Eq. (17). A biquadratic imped-

ance function P (s) can be decomposed accorCiing to Figure I if Eq. (15) holds.

The circuit in this event is the well-known Brune circuit where u9(s), vV(s) , and
wV(s) are inductive impedances and xO(s) is a capacitive impedance.

Next let us consider a less trivial example: Let - I . Then (for the sake

of brevity omitting the subindex *0)

s+a9(s) = S S with a > b and bth positive (18)

O(S) =  S with a > and both positive (19)s~s + o

___________________ ___
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f 33lis 1 0w.,

m~d bycompai btwen q 3. 0 anduit REprset '(9 ) nd v_(14a d

SCircuits realizing 9(s) a,.d (p(s) in the f.rnpeac an th atlrittn- --ine.-preta-

tion are sbcra in Figure 3. The function: p(s) in tis e~-ent is biquar-ic acorin- g

to E-q. (9); -it can be wrritten as

s4 +";s3 + s "I O (20)

R(a+ =+) +

:av, + Rl l(a + Pl) V;0  (21b) i

3 (a+ + Do) + (224

D.,= 2 + D,'(b + a)+ (221)

__________...__.__ ____I:
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Z D'ba + V (b+ P) .(22c)

D 0 .D' 0 bP (22d)

As a numerical example let

N 3 a3.75 = 1.728571

'q -3. 949286 12= 3. 634285

=1.271429 ,= 2. 32

N0 a0137143 D 0 a0 *42

The numerical values of the coefficients 1 and (3W05 3) are such that P~(s)
can be decomposed in the attempted way; we shall use this example to show the de-
composition in a more concise way than the algebraic formulation. Our particular
problem isto determine N' 1 , M'0 , D' I, D 0 . a , b , a , and P by Eqs. (2 Ia.

.. d) and Eqs. (22a...., Although more cumbersome, a bisextic function
resulting from m =2 and so forth can be decomposed by way of a similar proce-
dure.

The circuit in Figure 1 has two extraordinary driving conditions. Whenever

the shunt impedance V + X is zero, we measure at the input the driving impedance
P(s) - utp(s) -. This is also true whenever the impedance W + Z is zero. LetsI
denote the set of solutions of the equation

V1V(s)+-.0(s)1 =0 (23)

and let s2 denote the set of solutions of the equation

0 (24)

In our particular example Eq. (23) becomes

s 2 s~a(s~)+-Is~b(s+)=O(25)

which is of the order four, and Eq. (24) becomes

s~ )-(s+b)0Oz ~ +,) (26)



which is quadratic. Note that since w is a negative constant, Eq. (26) has both a

positive solution s s21 and a negative solution s = - s22
With the set of zeros s 2

F =s2  uV(s 2 ) v(n - 1)97(s2) (27)

Note that by the definition of w in Eq. (2) and by Eq. (24)

4s) z/w znlvn- 1) , (28)

and by

F(01 F 0/l O  1/n 2  (29)

= = zn2  (30)

the constants z and n are known. Hence Eq. (27) becomes

A(s) = s 4 + A3 s 3 + A2 s 2 + AS + A 0 0 (31)

where

Ai  103 - "PU (0 <- 1 3 (31a)

The coefficients A. of Eq. (31) are thus known and the equation can be solved. It

is o1 the order four, with four solutions, two of which are the solutions s21 and
-21

-s22 of Eq. (24). Therefore Eq. (31) is redundant. Generally it offers twice the

number of solutions as Eq. (24). It can be shown (Haase, 1963) that if F(s) is bi-

quartic, Eq. (31) has real roots throughout. One root is positives the others are

negative. Only the positive root s = s21 can be identified as belonging to set a .

One of the negative roots is s - s22 and the redundant rcots are s Srl and

s Sr2. Let us now define

P2 = (21 - s22) " (32a)

q2  s21s22 " (32b)

2•



8

Pr -r1+Sr2) (33a)

qr 1SrlSr2 (33b)

Then Eq. (31) becomes

A(s) (s +s 2 -q 2 ) (s +SPr +q) = 0 (33)I I Thus far wo are unable to identify P 2 1 q2  pr' and q and in our example where
according to Eq. (31a)

A1 A 6. 445242 ° 2 4. 369286, A1  - 0. 126667, A 0 =-. 24

and

A(s) (s - 0. 214654) (s + 5. 672338) (s + 0. 277664) (s + 0. 709891)

we have three choices:

(1) P2  5. 457684 Pr 0. 987555

q2 1. 217590 qr= 0. 197111
(2) P2 = 0. 063010 Pr 6. 382229

q2  0. 059602 qr 4. 026742

(3) P2  0.495237 , Pr = 5,950002

q2  0. 152381 q = 1.575004

One of these choices is the correct one. By some algebraic manipulations we are
able to derive from Eqs. (21) and (22)

(P2 - Pr) "'i1 = Pr(D3 -N3 " 2 - 172 ) + q2(n - 1) - qr(I - 1/n) (34a)

]5'1 =N'I+ (D3 - )  
(3 4b)

so that for each of the choices N' and B5 can ' determined. Further, since
by Eq. (21d) and Eq. (22d)

no0 -N0o= bt(0- N' 0) (35a)

~~1

' I

iIU _ _



and by Eq. (15)

also D' 0 and N' 0 can be determined for each choice. It can also be shown that

a = P2 +  .4N 0 D' 5 1 1 (36a)

b =q 2  N' 11 N'D 1' (36b)

a= - .JD 0 , /D , (37a)

=qr N D I /  ' ,' (37b)

Only the correct choice yields all coefficients NX and 3' i positive and positive

constants a > b and a > 1. In our numerical example, choice (3) is the correct

one according to this discrimination: it yields

NtI =2.25, N' 0 =0.914286,13' =0.228571 , 3' =2.8, a=0.8, b=0.5,

a =0.7, P =0.3.

The last condition that we can derive from Eqs. (22) and (23) is that with the correct

choice

(!3 - L 3 )c 3 + ( -N 2 )c 2 + ( -N 1 )c + (D0 - N0 )c 0 (38)

when

C3 = P2qr + prq , (38a)

c 2 =-(q2 +q,) (38b)

C1  (P2  Pr )  (38c)

0 Prl + c2 P2 C21  (38d)0 q q -- Z+n

Our numerical exarph, shows that Eq. (38) is true.

e •
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If 1F(s) - P (s) is biquadratic the function can be decomposed in the attempted
way if Eq. (15) holds. Unfortunately, we do not have such a simple test for the bi- '

quartic function or a function of a higher bi-order-n. As we have shown, we are able

to make the correct choice, but this alone does not ensure that the function can be

decomposed as attempted. We show this in the following numerical example. Assume

a biquartic impedance function F(s) N(s) /D(s) where

N3 =3.413095 , D3 = 1.728571 ,

N2 = 3.896786 , D2 = 3.634285 ,

N 1 -1.446191 , = 2.32 * I
N0 =0.184286 , D0 o 0 . 42

Then n2 s 1.5096582. For this example

A(s) - (s - 0. 237544) (s + 5. 973491) (s + 0. 278596) (s + 0. 703759)
I

and the correct choice turns out to be
I

P 2 =0. 4 6 62 15 , Pr= 6 . 2 5 2 0 8 7 ,

q= 0. 167174 , qr = 1.664191 .q2

But instead of yielding 0, we obtain by Eq. (38) + 0. 029445. This shows that F(s)

in this example cannot be decomposed as desired. For this reason let us subtract

a positive constant NmI from F(s). By choosing Nm 1  =. 2 ,we find that the
function P(s) = IF(s) - Nml (l] - Nm 1 ) is normalized and still pr. It has the I.
following coefficients

N3 = 3.834226 , = 1.728571

f2 = 3.962411 . D2 = 3.634285f2 - 1
R I4 1.227739 , =2.32

N0 Z0.125358 ,D =0.42

Then a2 = 1.8304112. Solving Eq. (31) and making the correct choice, we obtain

P2 0. 503889 . Pr = 5.666015 ,

q= 0. 148057 , qr = 1.5497882I
...I

i?14

-1



Equation (38) yields - 0. 011711 instead of 0. But since the result obtained for

F(s) was positive, we know now that we are able to find a constant N M < 0. 2 that

yields exactly 0 by Eq. (38). In fact, if we choose Nm - 116, then F(s) has the

coefficients of the first numerical example.

We have shown that we have been able to prepare the function F(s) for decom-

position by subtracting a constant. However, this is not the only possibility. Assume

for instance that the denominator of a function F(s) is D(s) = s 4 + D3 s + ... +

Do = (s2+ d 1 1s + d1 0 ) (s2+ d2 1 s + d2 0 ) and d 2 < 4 d10, d12< 4d 2 0 . In this

event we can subtract either immittance

nrilS + n10 n2 1s + n 20
2 or s2 +d1

s +d 1 1s+d 0  2

and by the tsbtraction° the difference function is still a bi-order-4 function and with

a fairly wide choice of the constants nIl . n2 1 , nh0 . n2 0 the difference function

can be retained to be pr. However, decomposition may not be possible by sub-

tracting only a constant.

The realization of the circuit in Figure 1 requires a negative impedance con-

verter, since W is a negative impedance. Such a converter, however, may bring

up technical difficulties since the rank of W is 2m + 1 according to Eq. (2c) and

Eq. (7). But we have shown (Haase, 1966) that the circuit in Figure 1 is equivalent

in its driving-point impedance with the circuit in Figure 4. This circuit is termina-

ted by the positive impedance z' q(s), part of its shunt branch is the positive im-

pedance x! ((s) , and it implies a resistance star composed of the resistances RI
R1', and R', where

11, u + 1R' + 1R' w = 0 (39)

and

i R'u = R'v(n' - 1) ,(40a)

According to transformation formulas given by Haase (1966)

x x(n- )2 , (41)

z' v(n -l) 2  , (42)

t

. l ..-
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Ri lInt - (44)

R. f:

Figure- 4. Transformed
-Circuit of Figure I Figure 5. Circuit as in

Figure 4 With Resistance

R Grounded

Instead of a negative impedance of the rank 2.-n + 1 the circuit in Figure 4 contains

&negative resistance as the only negative element. This resistance can be realized
-by a tunnel diode for instance. Since the elements in the circuit can be rearranged,

it is possible to put the tunnel diode in the base branch where it can be grounded as
shown in Figure 5.

4(
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